Heterozygote advantage for fecundity
Gemmell NJ, Slate J.
School of Biological Sciences,
University of Canterbury,
Christchurch, New Zealand.
PLoS ONE. 2006 Dec 27;1:e125.


Heterozygote advantage, or overdominance, remains a popular and persuasive explanation for the maintenance of genetic variation in natural populations in the face of selection. However, despite being first proposed more than 80 years ago, there remain few examples that fit the criteria for heterozygote advantage, all of which are associated with disease resistance and are maintained only in the presence of disease or other gene-by-environment interaction. Here we report five new examples of heterozygote advantage, based around polymorphisms in the BMP15 and GDF9 genes that affect female fecundity in domesticated sheep and are not reliant on disease for their maintenance. Five separate mutations in these members of the transforming growth factor beta (TGFbeta) superfamily give phenotypes with fitness differentials characteristic of heterozygous advantage. In each case, one copy of the mutant allele increases ovulation rate, and ultimately litter size per ewe lambing, relative to the wildtype. However, homozygous ewes inheriting mutant alleles from both parents have impaired oocyte development and maturation, which results in small undeveloped ovaries and infertility. Using data collected over many years on ovulation rates, litter size, and lambing rates, we have calculated the equilibrium solution for each of these polymorphisms using standard population genetic theory. The predicted equilibrium frequencies obtained for these mutant alleles range from 0.11 to 0.23, which are amongst the highest yet reported for a polymorphism maintained by heterozygote advantage. These are amongst the most frequent and compelling examples of heterozygote advantage yet described and the first documented examples of heterozygote advantage that are not reliant on a disease interaction for their maintenance.
Sickle cell anaemia
Human self-domestication
Brain size/human evolution
Selecting potential children
Alzheimer's disease: resources
Transhumanism/Brave New World?
Francis Galton and contemporary eugenics
Gene therapy and performance enhancement
Preimplantation genetics and stem cell therapy
Cathepsin D, HLA-DRB1 and APO and intelligence
Institute for Germinal Choice ('Genius Sperm Bank')


and further reading

BLTC Research
Utopian Surgery?
The Good Drug Guide
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
MDMA: Utopian Pharmacology
Critique of Huxley's Brave New World