The PAH gene, phenylketonuria, and a paradigm shift
Scriver CR.
Department of Human Genetics,
Faculty of Medicine,
McGill University,
Montreal, Quebec, Canada.
Hum Mutat. 2007 Sep;28(9):831-45.


"Inborn errors of metabolism," first recognized 100 years ago by Garrod, were seen as transforming evidence for chemical and biological individuality. Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype, was identified in 1934 by Asbjörn Fölling. It is a disease with impaired postnatal cognitive development resulting from a neurotoxic effect of hyperphenylalaninemia (HPA). Its metabolic phenotype is accountable to multifactorial origins both in nurture, where the normal nutritional experience introduces L-phenylalanine, and in nature, where mutations (>500 alleles) occur in the phenylalanine hydroxylase gene (PAH) on chromosome 12q23.2 encoding the L-phenylalanine hydroxylase enzyme (EC The PAH enzyme converts phenylalanine to tyrosine in the presence of molecular oxygen and catalytic amounts of tetrahydrobiopterin (BH4), its nonprotein cofactor. PKU is among the first of the human genetic diseases to enter, through newborn screening, the domain of public health, and to show a treatment effect. This effect caused a paradigm shift in attitudes about genetic disease. The PKU story contains many messages, including: a framework on which to appreciate the complexity of PKU in which phenotype reflects both locus-specific and genomic components; what the human PAH gene tells us about human population genetics and evolution of modern humans; and how our interest in PKU is served by a locus-specific mutation database (; last accessed 20 March 2007). The individual Mendelian PKU phenotype has no "simple" or single explanation; every patient has her/his own complex PKU phenotype and will be treated accordingly. Knowledge about PKU reveals genomic components of both disease and health.
Metabolic profiling
Human self-domestication
Brain size/human evolution
Selecting potential children
Alzheimer's disease: resources
Transhumanism/Brave New World?
Francis Galton and contemporary eugenics
Gene therapy and performance enhancement
Preimplantation genetics and stem cell therapy
Cathepsin D, HLA-DRB1 and APO and intelligence

and further reading

BLTC Research
Utopian Surgery?
The Good Drug Guide
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
MDMA: Utopian Pharmacology
Critique of Huxley's Brave New World